
Preliminary findings from the emotion, mental imagery, & vaccine acceptance (EMIVA) project

Dr Julie Ji

Lecturer, School of Psychology, University of Plymouth Adjunct, School of Psychological Science, UWA Email: julie.ji@plymouth.ac.uk

in https://www.linkedin.com/in/drjulieji/ 🔀 @julieji.bsky.social

PROJECT TEAM

A/Prof Katie Attwell

A/Prof Jane Warland

Dr Zoe Bradfield

Curtin University

Government of Western Australia North Metropolitan Health Service King Edward Memorial Hospital

Prof Colin Macleod THE UNIVERSITY OF WESTERN AUSTRALIA

Prof Chris Blyth

A/Prof Lies Notebaert

WESTERN

AUSTRALIA

Prof Margie Danchin

murdoch children's
research institute

Dr Ben Grafton THE UNIVERSITY OF WESTERN AUSTRALIA

Catherine Hughes AM

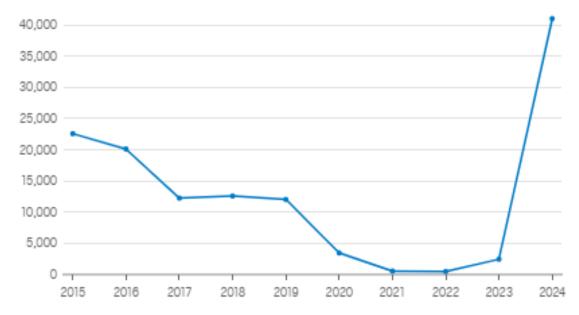
University of Exeter

Special thanks to midwife research assistants: Monique Rose, Eva Hansord

Doctors call for whooping cough vaccination uptake amid worst year on record for cases

By Georgie Hewson Va

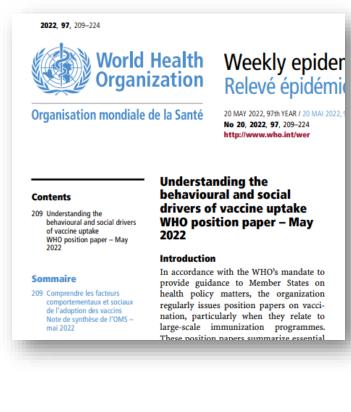
Vaccines and Immunity


Fri 8 Nov

Australia experiencing worst whooping cough epidemic on record

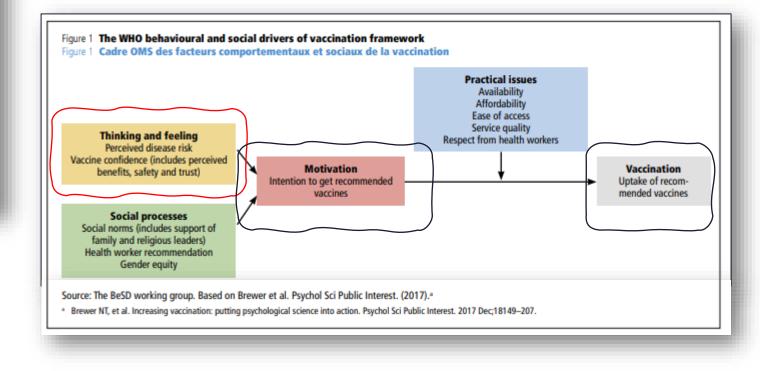
Whooping cough cases in Australia by year

Highest number of cases on record as of November, 2024.



ABC News / Source: Australian Government Department of Health and Aged Care. NINDSS Portal. / Get the data

New South Wales has recorded the highest number of cases (19,653), followed by Queensland (11,728).


Vaccine hesitancy:

Role of cognition (thinking) & emotion (feeling)

2022 WHO position on vaccine hesitancy ²:

"A motivational state of being conflicted about, or opposed to, getting vaccinated; this includes intentions and willingness."

WHO (2022). "Understanding the behavioural and social drivers of vaccine uptake WHO position paper - May 2022." Weekly epidemiological record(20): 209-224.

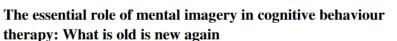
Research aim

Investigate mental imagery as modifiable psychological factor underpinning vaccine-related thinking, feeling, hesitancy, & behaviour <u>during pregnancy</u>, and after pregnancy (0-6 months post-delivery).

Mental imagery: an emotional & persuasive form of mental evidence

Feature Review Mental Imagery: Functional Mechanisms and Clinical

Applications


Joel Pearson, 1,* Thomas Naselaris, 2 Emily A. Holmes, 3,4 and Stephen M. Kosslyn 5

Mental imagery research has weathered both disbelief of the phenomenon and inherent methodological limitations. Here we review recent behavioral, brain imaging, and clinical research that has reshaped our understanding of mental imagery. Research supports the claim that visual mental imagery is a depictive internal representation that functions like a weak form of perception. Brain imaging work has demonstrated that neural representations of mental and perceptual images resemble one another as early as the primary visual cortex (V1). Activity patterns in V1 encode mental images and perceptual images vis a common set of low-level depictive visual features. Recent translational and clinical research reveals the pivotal role that imagery plays in many mental disorders and suggests how clinicians can utilize imagery in treatment.

Trends
Recent research suggests that you
mental imagery functions as fill were
week form of perception.
Enderce suggests overlap between
when imagery and visual working
memory - those with strong image
kind to sellar 4 kir meenen

Brainamaging work suggests that representations of perceived stimilional meeful imagina resemble one acceler as

WILEY

Lisa M. Saulsman^{1,2} 🤨 🕴 Julie L. Ji¹ | Peter M. McEvoy^{3,4} 📀

¹ School of Psychological Science, The University of Western Australia, Perth, Western Australia, Australia ² Cognitive Behaviour Therapy Services Western Australia, Perth, Western Australia, Australia ³ School of Psychology, Curtin University, Perth, Western Australia, Australia	Abstract Objective: The aim of this review is to highlight the important role of mental imagery in contemporary cognitive behaviour therapy (CBT). Method: In this narrative review, we define mental imagery based on cognitive science research, present the rationale for the incorporation of mental imagery within CBT, and outline four key applications of mental imagery within CBT prac-
--	--

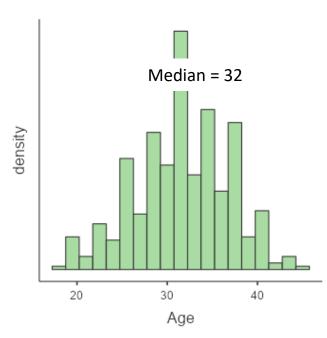
- Flashbacks & flashforwards in the mind's eye: relive the past (remember) & pre-experience the future (simulate) via mental imagery
- More powerful than verbal thinking in evoking emotions & motivating (maladaptive & adaptive) behaviours
- Availability influences event judgment (e.g. risk of negative events) & anticipated regret
- Increasing focus on mental imagery symptoms as an intervention target in clinical psychology

The EMIVA Project

15th Dec 2022 - 29th Sept 2023

000

- - COVID-19 •


N = 411 surveyed at baseline. (Excluded n = 7 participants told to avoid vaccines during pregnancy.)

Method

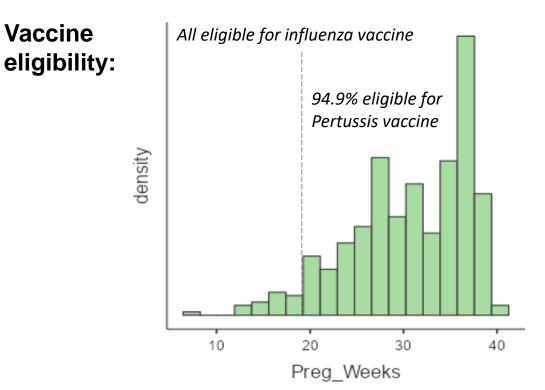
Participants

૾ૣ૾૾૾ૣ૾૾૾ૣ૽ઌ૾ૣ૾

Education (highest attained)\

	N	%
Primary school & above	4	1%
High school	90	21.5%
TAFE qualification	104	24.9%
Undergraduate degree	140	33.5%
Postgraduate degree	80	19.1%

Ethnicity (could endorse multiple)

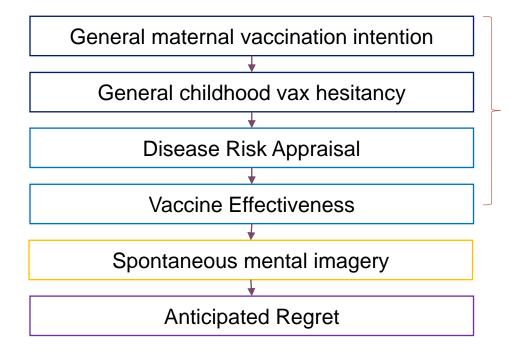

	N	%
Australian	237	57.6%
North/Western European	36	8.8%
South/Eastern European	11	2.7%
South/East Asian	55	13.4%
Aboriginal Australian	26	6.3%
Mid-Eastern/Nth African	13	3.2%
North/East Asian	14	3.40%
South/Central Asian	11	2.7%
People of the Americas	10	2.4%
Sub-Saharan African	19	4.6%

Method

Participants

Vaccination status at baseline

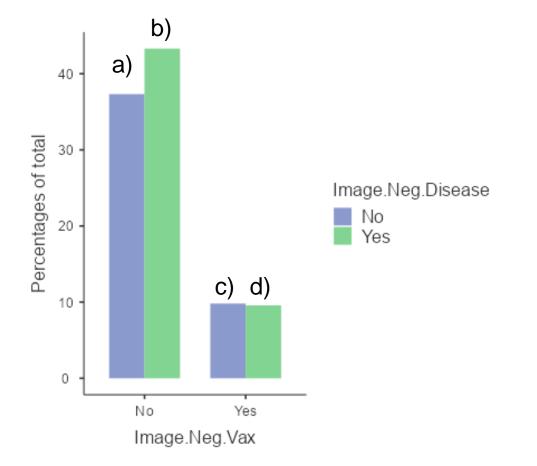
- Pertussis (whooping cough)
 - N = 141 (62.2%) vaccinated
- Influenza (flu)
 - *N* = 237 (58.1%) vaccinated
- COVID-19
 - N = 320 (21.6%) unvaccinated


First pregnancy:

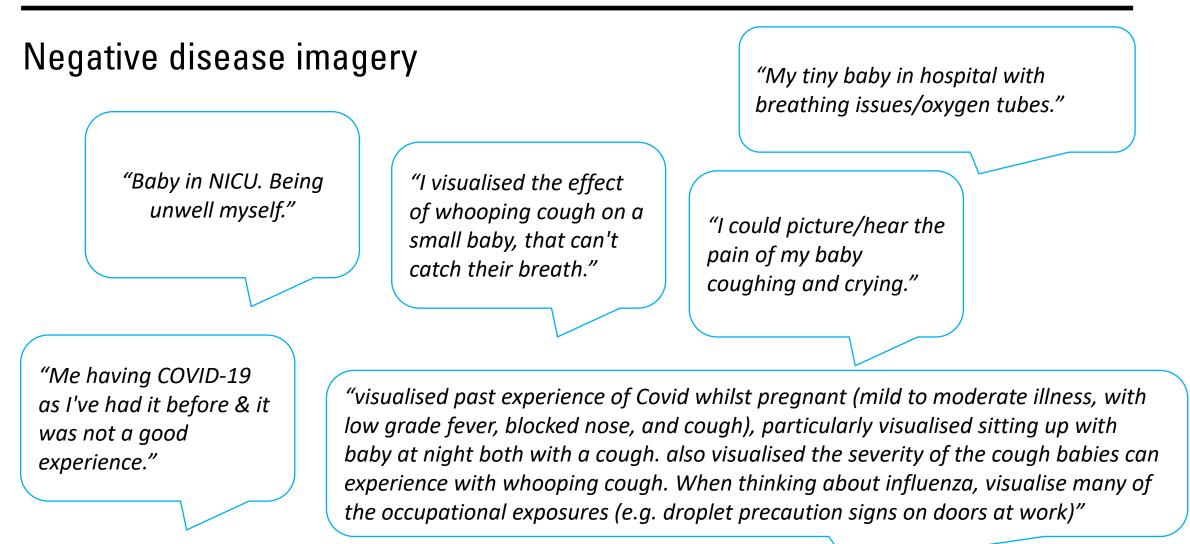
- *N* = 147 (35.3%)
- No relationship between first pregnancy status and baseline vaccination status for Pertussis, Influenza, or Covid.

Method

Baseline assessment


Yes/No - mental pictures/movie clips whilst responding to study so far:

- <u>Negative disease imagery</u> negative impact from diseases
- <u>Negative vaccine imagery negative impact from vaccines</u>


Results: Spontaneous Mental Imagery

Self-reported occurrence of spontaneous mental imagery

- a) 63% reported experiencing negative mental imagery, i.e. 37% did not.
- b) 43.30% reported experiencing negative <u>disease-</u> <u>impact</u> related mental imagery, but not negative <u>vaccine-impact</u> related mental imagery
- c) 9.81% reported experiencing negative <u>vaccine-</u> <u>impact</u> related mental imagery, but not negative <u>disease-impact</u> related mental imagery
- d) 9.57% reported experiencing <u>both types</u> of negative mental imagery

Majority experienced negative mental images, mostly related to disease, but ≈ 1/10 reported negative vaccine imagery.

A combination of flashbacks & flashforwards to emotionally negative scenes due to disease.

Negative & vaccine imagery

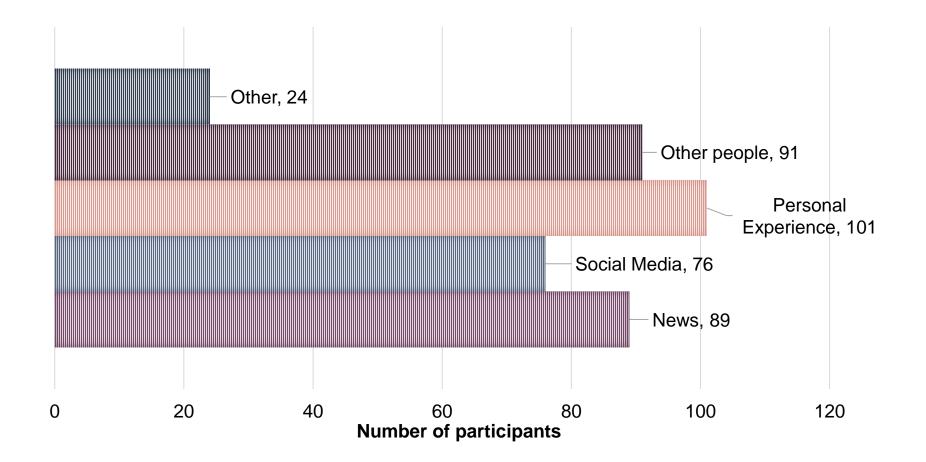
"I saw imagery of the testing equipment used to monitor side effects I had as a result of the Covid vaccinations."

"I saw myself getting injected with a vaccine, also saw myself getting ill with covid despite 3 vaccines for it, also saw every person who has had a flu vaccine that I know of come down with serious flu symptoms for more than 2 weeks."

"My friend very sick from covid vaccine."

"Imagining how the covid shot will affect my baby as I remember how the first shot affected me."

Negative disease & vaccine imagery


"Hospital visits, tubes and wires."

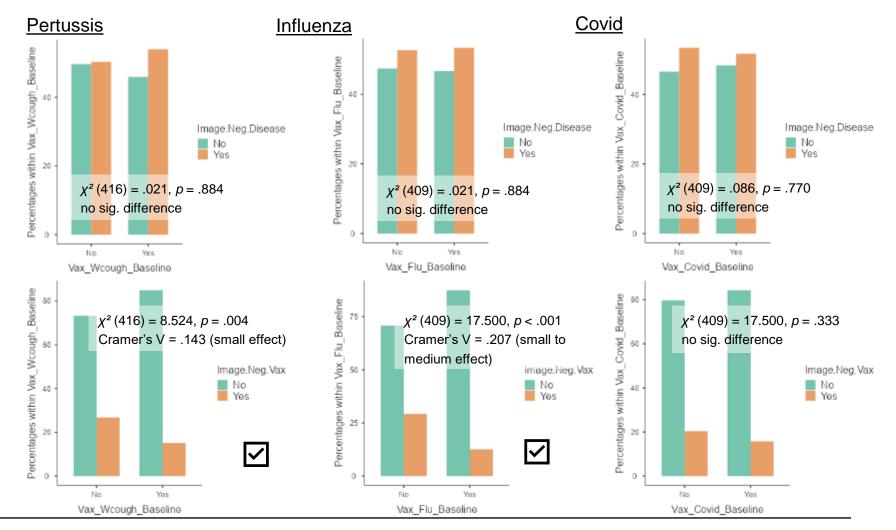
"Whooping sound of the cough; baby suffering from dehydration due to sore throat; COVID vaccine adverse effects on the baby or myself during pregnancy."

"flu vaccine - 2 images of a child who was in icu/ severe diability from adverse effect AND the image of parents grieving over the death of their child from the flu. Also, the amount of well people from covid. a friends complicated placenta issues from covid."

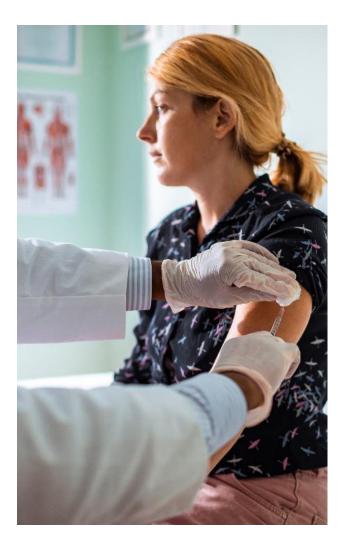
A combination of flashbacks & flashforwards to emotionally negative scenes due to disease &/or vaccine.

Imagery reflects a mixture of news/social media & direct/indirect experience

Results: Cross-sectional sample


RELATIONSHIP TO BASELINE VACCINATION STATUS

Negative diseaseimpact mental imagery


 Common, did not distinguish vaxed vs. unvaxed

Negative vaccineimpact mental imagery

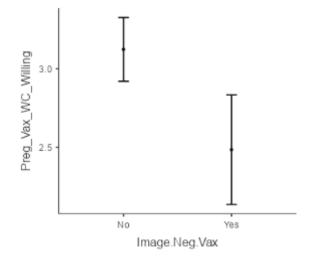
 Less common, more by unvaxed than vaxed (Pertussis & Influenza)

Participants unvaccinated (Pertussis & Flu) were more likely to report negative vaccine imagery than vaccinated ones.

Hypothesis: The presence of spontaneous negative vaccinerelated mental imagery would be associated with greater hesitancy, lower vaccine uptake, more negative thinking & feeling favouring inaction (not vaccinating)

• Those unvaccinated at baseline

MATERNAL HESITANCY - PERTUSSIS


Table 1.

Full model

• $F(8, 134) = 11.417, R^2 = 40.53\%$

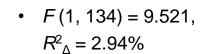
Negative vaccine-impact mental imagery:

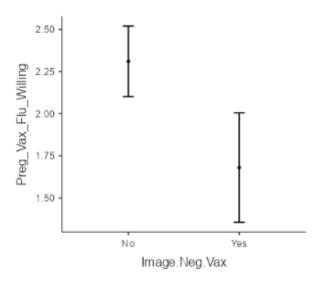
• $F(1, 134) = 9.2496, R_{\Delta}^2 = 4.10\%$

95% C.I. Predictor Estimate SE Lower Upper t в D Intercept 2.289 0.205 11.149 <.001 **General Childhood Vaccine** -0.131 0.031 -4.248 <.001 -0.347 -0.508 -0.185 Hesitancy Disease-specific risk perception Likelihood of infection -0.022 0.151 -0.145 0.885 -0.017 -0.256 0.221 Likelihood of health impact 0.054 0.128 0.419 0.676 0.048 -0.178 0.274 Vaccine protection for -0.249 0.145 -1.714 0.089 -0.200 -0.430 0.031 infection Vaccine protection for health -0.014 0.100 -0.135 0.893 -0.013 -0.206 0.180 impact -0.075 0.065 Anticipated Regret (Action Bias) -1.149 0.253 -0.095 -0.257 0.068 Spontaneous Negative Mental Imagery (Yes – No) **Disease-impact imagery** -0.096 0.182 -0.526 0.600 -0.074 -0.354 0.205 Vaccine-impact imagery -0.639 0.210 -3.041 0.003 -0.495 -0.817 -0.173

Linear regression model coefficients predicting Pertussis vaccine hesitancy during pregnancy.

Negative vaccine imagery independently predicts Pertussis vaccine hesitancy over & above other known factors.


MATERNAL HESITANCY - INFLUENZA


Table 3.

Full model

• $F(8, 134) = 22.128, R^2 = 54.63\%$

Negative vaccine-impact mental imagery:

Negative vaccine imagery independently predicts Influenza vaccine hesitancy over & above other known factors.

Linear regression model coefficients predicting Influenza vaccine hesitancy during pregnancy. 95% C.I. Predictor Estimate SE Upper t р ß Lower Intercept 1.081 5.235 0.206 <.001 **General Childhood Vaccine** -0.152 0.031 -4.948<.001 -0.331 -0.463 -0.199 Hesitancy Disease-specific risk perception Likelihood of infection 0.177 0.138 1.284 0.201 0.109 -0.059 0.277 Likelihood of health impact 0.482 0.630 0.045 0.230 0.060 0.124 -0.140 Vaccine protection for -0.335 -0.201 0.139 -2.411 0.017 -0.366 -0.036 infection Vaccine protection for health -0.211 -0.049 0.118 -0.410 0.682 -0.036 0.139 impact -0.145 0.065 -2.236 0.027 -0.154 -0.290 -0.018 **Anticipated Regret (Action Bias)** Spontaneous Negative Mental Imagery (Yes – No) 0.118 **Disease-impact imagery** -0.1750.180 -0.975 0.331 -0.115-0.347 Vaccine-impact imagery -0.630 0.204 -3.086 0.002 -0.413 -0.677 -0.148

Linear regression model coefficients predicting Covid vaccine hesitancy during pregnancy.

COVID - WILLINGNESS

Table 3.

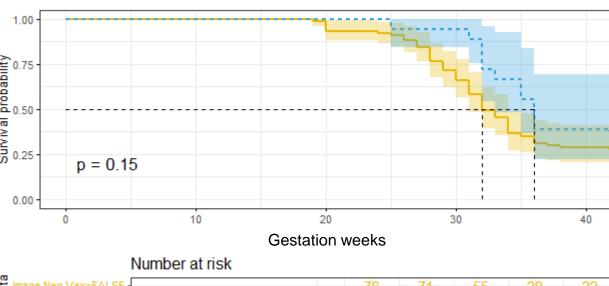
Full model

• F(8, 274) = 17.334, $R^2 = 33.60\%$

						95% (C.I.	Negative vaccine-impact
Predictor	Estimate	SE	t	р	β	Lower	Upper	mental imagery:
Intercept	0.314	0.186	1.688	0.093				mentai iniagery.
General Childhood Vaccine Hesitancy	-0.100	0.028	-3.604	<.001	-0.206	-0.319	-0.094	• $F(1, 274) = 7.531,$ $R^2_{\Delta} = 1.82\%$
Disease-specific risk perception								
Likelihood of infection	0.171	0.110	1.552	0.122	0.108	-0.029	0.245	
Likelihood of health impact	0.185	0.098	1.883	0.061	0.133	-0.006	0.273	1.75 T
Vaccine protection for infection	-0.254	0.112	-2.272	0.024	-0.170	-0.317	-0.023	
Vaccine protection for health impact	0.028	0.097	0.290	0.772	0.022	-0.126	0.169	0 0 1.25 -
Anticipated Regret (Action Bias)	-0.123	0.054	-2.289	0.023	-0.137	-0.255	-0.019	Х Г Б 1.00 -
Spontaneous Negative Mental Ima	gery (Yes – No))					、	0 1.00 E
Disease-impact imagery	-0.114	0.154	-0.743	0.458	-0.077	-0.280	0.127	0.75 -
Vaccine-impact imagery	-0.521	0.190	-2.744	0.006	-0.350	-0.602	-0.099	No Yes
·								Image.Neg.Vax

Negative vaccine imagery independently predicts Covid vaccine hesitancy over & above other known factors.

PERTUSSIS - VACCINATION BEHAVIOUR: UPTAKE TIMING


Unvaxed at baseline: N = 157

- N = 95 consented to record access)
- *N* = 29 (30.53%) remained unvaxed at end of pregnancy

Negative vaccine imagery status:

• Did not predict vaccine uptake timing, b = -.464, z = -1.398, p = .162

1.00 Survival probability 0.50 -0.25 p = 0.150.00 10 20 30 40 0 Gestation weeks Number at risk Strata mage.Neg.Vax=FALSE Image.Neg.Vax=TRUE 18 20 25 30 35 40 Time

Strata 🛨 Image.Neg.Vax=FALSE 🕂 Image.Neg.Vax=TRUE

PERTUSSIS – VACCINATION BEHAVIOUR: NON-UPTAKE LIKELIHOOD

Table 2.

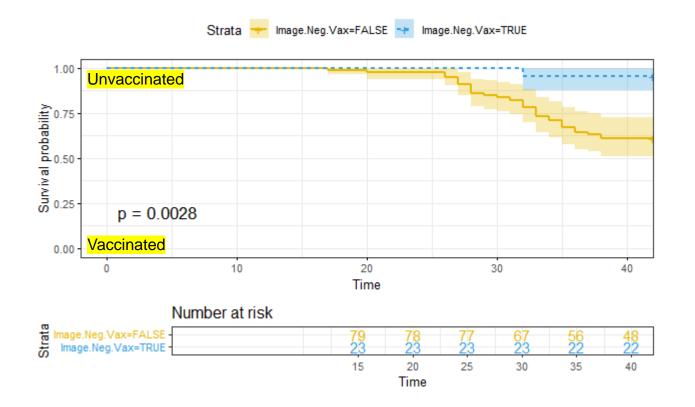
Unvaxed at baseline: N = 157

- N = 95 consented to record access)
- N = 29 (30.53%) remained unvaxed at end of pregnancy

		95%	C.I.				
Predictor	Estimate	Lower	Upper	SE	Z	р	Odds ratio
Intercept	-0.265	-1.254	0.724	0.505	-0.525	0.600	0.767
General Maternal Vaccine Hesitancy	0.723	0.052	1.394	0.342	2.110	0.035	2.060
General Childhood Vaccine Hesitancy	-0.013	-0.193	0.167	0.092	-0.140	0.889	0.98
Spontaneous Negative Mental Imagery (Yes – No)							
Disease-impact imagery	0.471	-0.471	1.413	0.481	0.979	0.327	1.60
Vaccine-impact imagery	0.500	-0.848	1.848	0.688	0.727	0.467	1.649

Note. Estimates represent the log odds of Uptake vs. Non-uptake

Negative vaccine imagery did not predict likelihood of vaccine non-uptake for Pertussis.


INFLUENZA – VACCINATION BEHAVIOUR: UPTAKE TIMING

Unvaxed at baseline: N = 171

- N = 102 consented to record access
- N = 70 (68.6%) remained unvaxed at end of pregnancy

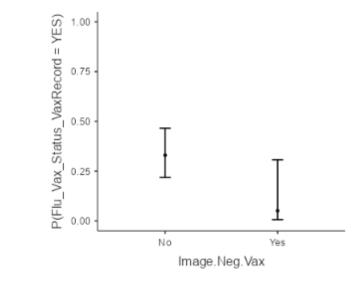
Negative vaccine imagery status:

- Significantly predicted vaccine uptake timing, b = -2.406, z = -2.367, p = .018
- Trend towards predicting vaccine uptake timing over & above general maternal hesitancy, *b* = -1.873, *z* = -1.834, *p* = .067.

Individuals reporting negative vaccine mental imagery also had significantly later vaccine uptake for Influenza.

May help to predict behaviour over and above motivation/intention.

INFLUENZA – VACCINATION BEHAVIOUR: NON-UPTAKE LIKELIHOOD


		95%	C.I.				
Predictor	b	Lower	Upper	SE	Z	р	Odds ratio
Intercept	-1.468	-2.612	-0.323	0.584	-2.513	0.012	0.230
General Antenatal Vaccination Intention	1.108	0.316	1.899	0.404	2.744	0.006	3.027
General Childhood Vaccine Hesitancy	-0.022	-0.207	0.164	0.095	-0.228	0.820	0.979
Spontaneous Negative Menta	l Imagery	Yes – No))				
Disease-impact imagery	-0.650	-1.665	0.365	0.518	-1.255	0.209	0.522
Vaccine-impact imagery	-2.217	-4.386	-0.049	1.106	-2.004	0.045	0.109

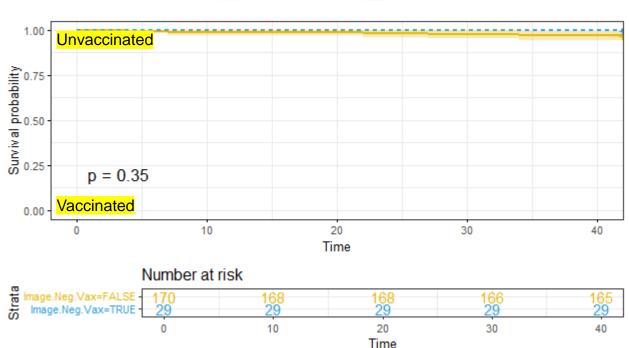
Full model

• $\chi^2(4) = 26.462, p < .001, R^2_{\text{Nagelkerke}} = 32.10\%$

Negative vaccine-impact mental imagery:

• $\chi^2(1) = 6.242, R^2_{\text{Nagelkerke}} = 6.84\%$

Negative vaccine imagery independently predicts likelihood of Influenza vaccine uptake over & above other known factors.


COVID – VACCINATION BEHAVIOUR: UPTAKE TIMING

Unvaxed at baseline: N = 320

- N = 199/320 consented to record access
- N = 195 (97.5%) remained unvaxed at end of pregnancy

Negative vaccine imagery status:

 Did not predicted vaccine uptake timing, b = -18.26, z = -.002, p = .999

Strata <table-cell-rows> Image.Neg.Vax=FALSE <table-cell-rows> Image.Neg.Vax=TRUE

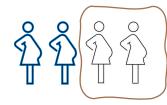
Covid vaccine uptake timing or status was not related to negative vaccine mental imagery (very few vaccinated).

COVID – VACCINATION BEHAVIOUR: VACCINE NON-UPTAKE LIKELIHOOD

Table 6.

Binomial regression model coefficients predicting Covid vaccine uptake during pregnancy.

					ç	95% C.I.	
Predictor	Estimate	SE	Z	р	Odds ratio	Lower	Upper
Intercept	-4.985	1.602	-3.112	0.002	0.007	0.000	0.158
General Antenatal Vaccination Intention	0.598	0.909	0.658	0.511	1.819	0.306	10.800
General Childhood Vaccine Hesitancy	0.019	0.192	0.100	0.920	1.019	0.700	1.484
Spontaneous Negative Mental Imagery (Yes – No)							
Disease-impact imagery	0.932	1.132	0.823	0.410	2.540	0.276	23.364
Vaccine-impact imagery	-15.564	1937.328	-0.008	0.994	0.000	0.000	Inf


Overall model not significant:

• $\chi^2(4) = 3.048, p = .550,$ $R^2_{\text{Nagelkerke}} = 7.26\%$

Note. Estimates represent the log odds of "Uptake" vs "No Uptake"

Vaccination uptake for Covid was not predicted by known factors – likely due to small sample of vaccinated individuals.

Summary of findings

Longitudinal prospective sample

Those unvaccinated at baseline

Predicts vaccine hesitancy - Pertussis, Influenza, & Covid:

• Presence of negative vaccine-related mental imagery was an independent predictor

Over & above general childhood vaccine hesitancy, perceived disease risk & vaccine effectiveness, & anticipated regret bias

Predicts uptake timing (gestation weeks passed) – Influenza only:

- Negative vaccine-related mental imagery predicted later uptake timing
- Trend towards predicting timing above & beyond general maternal vaccine hesitancy (intention)

Predicts uptake status (yes/no) – Influenza only:

- Negative vaccine mental imagery was an independent predictor
- Over & above general maternal vaccine hesitancy (intention)

Implications

First evidence of mental imagery's link to vaccinerelated risk perception (thinking) & anticipated regret (feeling)

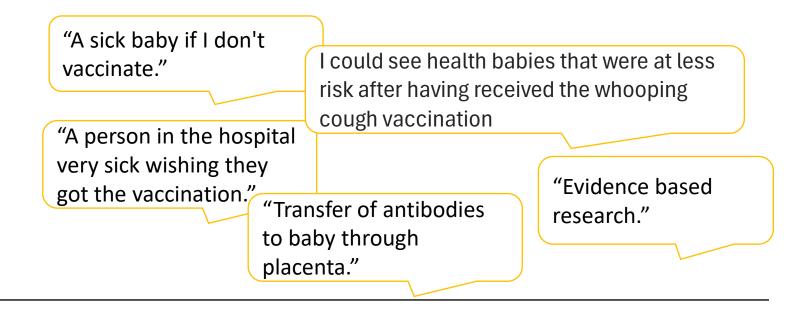
& as a novel independent *predictor* of vaccine hesitancy & behaviour over & above risk perception & anticipated regret.

٠

Mental availability of **negative vaccine-related mental imagery** is more predictive of vaccine-related thinking & feeling than availability of negative disease-related mental imagery.

Predicts disease-specific hesitancy above & beyond known factors - i.e. not just epiphenomenal.

- It predicts the timing and occurrence of Influenza vaccine uptake, above & beyond hesitancy (intention).
- Potentially important behaviour predictor for medium coverage diseases (like flu).


• Indicates negative mental imagery to be a potentially useful novel cognitive target for further research.

Future directions for research

A closer look at participants' mental images

- Vast majority of mental images are emotionally negative sick babies, hospitals, test tubes, coughing. Thus, more negativity may drive avoidance/denial
- Some mental images were also endorsed as **positive** relating to vaccines:

Future directions for research: can imagery enhance existing interventions?

Taylor & Francis Taylor & Francis Group

Check for updatea

HUMAN VACCINES & IMMUNOTHERAPEUTICS 2019, VOL. 15, NO. 11, 2534-2543 https://doi.org/10.1080/21645515.2019.1607131

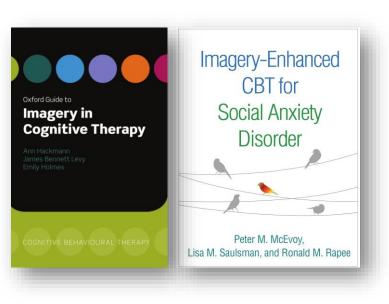
RESEARCH PAPER

Vaccine discussions in pregnancy: interviews with midwives to inform design of an intervention to promote uptake of maternal and childhood vaccines

Jessica Kaufman^{a,b*}, Katie Attwell^{c,d,e*}, Yvonne Hauck^{f,g}, Saad B. Omer^h, and Margie Danchin^{a,e,ij}

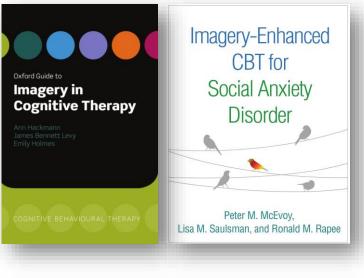
Multi-component P3-MumBubVax intervention

Table 1. Motivational Interviewing (MI) Skills Included in MI4MI Training Intervention.


Motivational Interviewing:

- Structured counselling • approach to motivating behaviour change
- Through active listening, ٠ eliciting specific concerns, and asking permission to share information or views

Brief MI Skills	Explanation	Example
Open-ended questions	Explore and understand a patient's stance on vaccination	"What have you heard about these vaccines?"
Affirmation	Show support and appreciation for a patient by highlighting positive attributes	"I can tell you're being very thoughtful about this decision"
Reflection	Confirm understanding of a patient's viewpoint and help patient better understand their own motivations	"It sounds like you are concerned about side-effects from the flu vaccine AND you want to keep your baby healthy"
Ask permission to share	Improve patient receptivity by asking first before presenting more information	"Would it be ok if I share with you what I've learned about using these vaccines during pregnancy?"
Autonomy support	Letting patient know they are in control.	"Ultimately this decision is up to you."


Prof Margie Danchin A/Prof Katie Attwell

Cataldi, Fisher, Brewer, Spina, Glasgow, Perreira, ... & O'Leary (2022).

Future directions for research: imagery techniques from clinical psychology

Possible ways imagery can enhance vaccine communication:


- Imagery-enhanced motivational interviewing:
 - Psychoeducation about imagery
 - Normalise anxiety/fear during decision-making process
 - Reframe anxiety as normal response to uncertainty
- Making the rewarding outcome of action concrete & salient
 - Functional Imagery Training (Jackie Andrade, University of Plymouth)
 - Imagine future events & emotions when her child is protected

Public health campaigns that promote mental evidence:

- Personal stories/testimonials (with pictures/videos) of "near-hits" to boost pre-factual mental simulation of "what-if I had chosen not to vaccinate":
 - Strengthen the association between action & relief, inaction & regret

Inoculate against misinformation – plug knowledge gaps

Pictures & video explainers of how vaccines work

THANK YOU

Government of Western Australia Department of Health

PROJECT TEAM

Email: julie.ji@plymouth.ac.uk

FOUNDATION

@julieji.bsky.social